Stratospheric Loss and Atmospheric Lifetimes of CFC-11 and CFC-12 Derived From Satellite Observations
نویسندگان
چکیده
The lifetimes of CFC-11 and CFC-12 have been evaluated using global observations of their stratospheric distributions from satellite-based instruments over the time period from 1992 to 2010. The chlorofluorocarbon (CFC) datasets are from the Cryogen Limb Array Etalon Spectrometer (CLAES), the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA-1 and CRISTA2), the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), and the Atmospheric Chemistry Experiment (ACE). Stratospheric loss rates were calculated using an ultraviolet radiative transfer code with updated cross section and solar irradiance data. Mean steady-state lifetimes based on these observations are 44.7 (36–58) yr for CFC-11 and 106.6 (90–130) yr for CFC-12, which are in good agreement with the most recent WMO ozone assessment. There are two major sources of error in calculating lifetimes using this method. The first important error arises from uncertainties in tropical stratospheric observations, particularly for CFC-11. Another large contribution to the error is due to uncertainties in the penetration of solar ultraviolet radiation at wavelengths between 185 and 220 nm, primarily in the tropical stratosphere between 20 and 35 km altitude.
منابع مشابه
Stratospheric lifetimes of CFC-12, CCl4, CH4, CH3Cl and N2 from measurements made by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS)
Long lived halogen-containing compounds are important atmospheric constituents since they can act both as a source of chlorine radicals, which go on to catalyse ozone loss, and as powerful greenhouse gases. The long-term impact of these species on the ozone layer is dependent on their stratospheric lifetimes. Using observations from the Atmospheric Chemistry Experiment Fourier Transform Spectro...
متن کاملRe-evaluation of the lifetimes of the major CFCs and CH3CCl3 using atmospheric trends*
Since the Montreal Protocol on Substances that Deplete the Ozone Layer and its amendments came into effect, growth rates of the major ozone depleting substances (ODS), particularly CFC-11, -12 and -113 and CH3CCl3, have declined markedly, paving the way for global stratospheric ozone recovery. Emissions have now fallen to relatively low levels, therefore the rate at which this recovery occurs w...
متن کاملRelaxing the well-mixed greenhouse gas approximation in climate simulations: Consequences for stratospheric climate
[1] The climatic consequences of relaxing the uniform greenhouse gas (GHG) assumption in the Canadian Centre for Climate Modelling and Analysis atmospheric general circulation model are examined. A simple chemical loss parameterization for nitrous oxide, methane, CFC-11, and CFC-12 is employed that includes stratospheric water vapor production from methane oxidation. Multidecadal mean distribut...
متن کاملVolatile anaesthetics and the atmosphere: atmospheric lifetimes and atmospheric effects of halothane, enflurane, isoflurane, desflurane and sevoflurane.
The atmospheric lifetimes of the halogenated anaesthetics halothane, enflurane, isoflurane, desflurane and sevoflurane with respect to reaction with the hydroxyl radical (OH.) and UV photolysis have been determined from observations of OH. reaction kinetics and UV absorption spectra. Rate coefficients for the reaction with OH radicals for all halogenated anaesthetics investigated ranged from 0....
متن کاملBalloon-borne radiometer measurements of Northern Hemisphere mid-latitude stratospheric HNO3 profiles spanning 12 years
Low-resolution atmospheric thermal emission spectra collected by balloon-borne radiometers over the time span of 1990–2002 are used to retrieve vertical profiles of HNO3, CFC-11 and CFC-12 volume mixing ratios between approximately 10 and 35 km altitude. All of the data analyzed have been collected from launches from a Northern Hemisphere mid-latitude site, during late summer, when stratospheri...
متن کامل